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ABSTRACT 

 Inventory models in which the demand rates depends on the inventory level are based on the common 

real- life observations that greater product availability tends to stimulate more sales. This study comprises 

a situation in which items deteriorates and are having stock dependent demand rate. In this study, we 

present an optimization framework to derive an optimal ordering quantity for items with a stock 

dependent demand rate under inflationary conditions and partial backlogging. 

 

INTRODUCTION 

 In many real life situations, especially for fashionable commodities and seasonal products, the 

willingness for customers to wait for back logging during a shortage period is declining with the length of 

the waiting time. The longer the waiting time is, the smaller the back logging rate would be. Abad (1996) 

considered the pricing and lot-sizing problem of perishable products for a reseller with a general 

decreasing partial back logging rate.  A stock out occurs whenever insufficient stock exists to fulfill a 

replenishment order. During the stock out period, either all the demand is back ordered, in which all 

customers wait until their demand is satisfied; or all the demand is lost. However, in many real inventory 

systems, demand can be captive partially, for customers whose needs are not crucial at that time can wait 

for the item to be replenished, while others who can not wait will fill their demands from some other 

sources. The cost for a lost sale ranges from profit loss on the sale to some unspecifiable loss of good 

will. On the other hand, the back ordering could result in handling cost, expediting cost, and frequently 

special shipping cost to reduce the lead time. In order to compensate customers for the inconvenience of 

waiting, the idleness of equipment, or even lost production during the stock out period, the supplier may 

offer a variable price discount on the stock out item depending on the seriousness of the back order 

condition. Thus both are the backorder discount and the lead time appear to be negotiable in such a way 

that the supplier may cut down the present and future profit losses and the customers may be able to get 

the item as soon as possible to resume the production. 

 Chang and Dye (1999) recently developed an inventory model in which the proportion of customers who 

would like to accept back logging is the reciprocal of a linear function of the waiting time. Concurrently, 

Papachristos and S. Kouri (2000) established a partially backlogged inventory model with deterministic 

varying demand and constant deterioration rate, in which the backlogging rate decreases exponentially as 

the waiting time increases. Later, several related articles were presented, dealing with such inventory 

problem, such as Abad (2001), Goyal and Giri (2001), Papachristos and Skouri (2003), Teng et. al. (2002, 

2003), Wang (2002). 

In the present model we consider the perishable items under the effect of Inflation with partial 

backlogging. This model will help purchaser in deciding optimal ordering quantity under the effect of 

inflation and partial lost, since demand is stock dependent demand, the demand increases with the 

increase of stock. The environment of the whole study has been taken as inflationary, as any study done 

otherwise cannot justify itself under any circumstances.  

 

ASSUMPTIONS AND LIMITATIONS 

The mathematical model in this paper is developed on the basis of the following assumptions and 

limitations. 
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(1) The demand rate D(t) at time t is  

    
  

 
  

I(t) I(t) 0
D(t)

(t) 0
 

Where a and b are positive constants and I(t) is the inventory level at time t. 

(2) CVT (t1, T) is the total variable cost per unit time. 

(3) We have assumed that the lead-time is zero and replenishment rate is infinite. 

(4) It is assumed that only a fraction of demand is backlogged. The longer the waiting t ime is, the 

smaller is the backlogging. B(t) denote this backlogging rate, where t is the waiting time up to the next 

replenishment. 
 

1
B(t)

(1 t)
 , Where   is the backlogging parameter  

 

NOTATIONS  

The mathematical model in this paper is developed on the basis of the following notations. 

td  = length of time in which the product has no deterioration. 

  = Constant rate of deterioration. 

t1 = length of time (there is no shortage) 

T = length of order cycle. 

Q = order quantity per cycle. 

A = ordering cost per order 

C1 = holding cost per unit time 

C2 = deteriorating cost per unit. 

C3 = shortage cost per backlogged items, 

C4 = unit cost of lost sales. 

 

MATHEMATICAL MODEL 

 In this model we have consider replenishment model for items with constant deterioration rate and 

partial back logging. In this model is stock dependent demand is considered. Initially we have Imax units 

of items. During the time period [0, td]. The inventory level is decreasing only owing to stock-dependent 

demand rate. Inventory is depleted by demand as well as deterioration during the time interval (td , t1). 

The mathematical set up of the given inventory model is given by 

 
    1

1

dI (t)
I (t)

dt
,  0 ≤  t ≤  td     (1) 

 Or       1
1

dI (t)
I (t)

dt
 

 Solution with the boundary conditions t = 0, Imax = I1(t) = I1(0) is given by 

 

  
   

 

t t

1 maxI (t)e e I  

 

 
  


t t

1 maxI (t)e (1 e ) I  

 

 
  


t t

1 maxI (t) (e 1) I e  , 0 ≤  t ≤  td    (2) 

 Inventory is depleted by demand as well as deterioration during the time interval [td, t1]. Thus, the 

differential equation representing the inventory status is given by 

 
      2

2 2

dI (t)
I (t) I (t)

dt
 , td ≤  t ≤  t1.           (3) 

 
    2

2

dI (t)
( )I (t)

dt
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The solution of the given differential equation with the boundary condition when t = t1 , I2(t) = 0 is given 

by  

  
 

     
1( )( t t )

2I (t) e 1            (.4) 

Continuity of I(t) at t= td, from equation (4.2) and (4.4) one can  get  

  
    

         
d 1 dt ( )( t t )td

1 d maxI (t ) e I (1 e ) e 1  

Implies that maximum inventory level for each cycle is 

 

     
      

1 d d d( )( t t ) t t

maxI e 1 e e 1
( )

        (5) 

putting the value equation (4.5) into equation (4.2), we get  

 
      

            
1 d d d( )( t t ) ( t t ) ( t t )

1I (t) e 1 e e 1
( )

,        0< t < td  .(6) 

 During the shortage, demand is partially backlogged. Thus the inventory level at time t is given by 

the following differential equation  

 


      
  

3
1

dI (t)
(T t) ,t t T

dt 1 (T t)
    (7) 

 
 


 

  

3dI (t)

dt 1 (T t
 

 
 


 

  
3dI (t) dt

1 (T t
 

 

   
  


3

ln 1 (T t
I (t) c   

  


    


3I (t) ln 1 (T t c  

with boundary conditions     1t t  ,    3 1I (t ) 0  

 
   

 
        

 
3 1I (t) ln 1 (T t ) ln 1 (T t )  

 
    


        


3 1I (t) In 1 (T t ) ln 1 (T t) ,      1t t T            (8) 

 Putting t=T in equation (8), the maximum amount of demand backlogged per cycle we get 

  


     


3 1S I (T) ln 1 (T t )                             (.9)  

 The order quantity, Q from equation (5) and (9) 

    maxQ I S  

       
            

1 d d d( )( t t ) t t

1e 1 e (e 1) ln 1 (T t )          (10) 

 The total variable cost per cycle consists of the following five elements: 

(a) The ordering cost per cycle is  A 

(b) The inventory holding cost per cycle we get 

 

 
    

  
 
d 1

d

t t

1 1 2

0 t

Hc c (1 rt)I (t)dt (1 rt)I (t)dt  
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     
   

      
    


d

1 d d d

t

( )( t t ) ( t t ) ( t t )

C 1

0

H c (1 rt) (e 1)e (e 1) dt  

 

 


   
   


1

1

d

t

( )( t t )

t

(1 rt) (e 1)dt  

 

     
   

     
    


d

1 d d d

t

( )( t t ) ( t t ) ( t t )

1

0

c (e 1)e (e 1) dt
( )

 

 

 


   
   


1

1

d

t

( )( t t )

t

(1 rt) (e 1)dt  

 

      
   

     
    


d

1 d d d

t

( )( t t ) ( t t ) ( t t )

1

0

t t
rc e 1 e (e 1) dt  

 

 


  
   


d

1

t

( )( t t )

0

t
(e 1)dt

( )
 

 

 
d

1 d

t 2
( )(t t ) d d

d2 2

t te 1 1
e 1 t

( ) 2


      

        
        

 

 

 

      
     

          

1 d

( )( t t )1 d

( )( t t )

d
1 1 2

t 1 e
K rc (e 1)

( ) ( )
  

  

  



    
         
                  

d 1 dt ( )( t t )

d1
12

tte 1 e
t t

( ) ( ) ( ) ( )
 

 

 



   
      
           

1 d

2

( )( t t ) 22

d1

2 ( )

tt1 e

( ) ( ) 2 ( ) 2
 

 Where    
    





   
      

 

d

( )( t t ) ( t t ) ( t t )1 d d d

t

1 1

0

K c e 1 e e 1 dt  

 

 
 




  



1

( )( t t )1 d

d

t

( )

t

e 1 dt  

 

       
     

      

1 d 1 d( )( t t ) ( )( t t )d
1 1 2

t
K rc e 1 e 1

( ) ( )  

  


     
    
     

d

1 d d

t2
( )(t t ) t d d

2 2 3

t t e
e 1 e

( )
 

 

 
   

     
         

1 d( )( t t )2 22

d d d1 1

3 2 2

t t e tt t

2 ( ) ( ) ( ) ( )
 

 

 

 
    
            

( )( t t )1 d 22

d1

3 3

tt e

( ) 2( ) ( ) 2( )
 

 


 

  
       

          

d

1 d

t
( )( t t ) d d

1 1 2 2 2

t t1 e 1
K rc e

( ) ( ) ( )
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       
       
             

d dt t2 2

d d d d

2 2 2 3 3

t t t te e

( ) ( ) ( ) 2  

  
   

    
         

2 22

d d1 1

2 3

t tt t

( ) 2( ) ( ) ( ) 2( )  

   


 

   
    

           

d

1 d

t
( )( t t ) d

1 1 2 2

te 1 1
K rc e

( ) ( ) ( )
 

 


      

        
                

d

d

t 2 2
td d 1 1

2 2 3 2 3

t t t t(1 e )
(1 e )

( ) ( ) 2 ( ) ( ) 2( ) ( )
 

 


 

   
    

         

d

1 d

t
( )( t t ) d

1 1 2 2

te 1 1
Hc K rc e

( ) ( ) ( )
 

      

     
      
               

dt 2 2

d d 1 1

2 3 2 3

t t t t(1 e )

( ) ( ) 2 ( ) ( ) 2( ) ( )
   (11) 

The deterioration cost per cycle we get 

 

 
    

  

1

d

t

2 2 d

t

Dc C I (t )(1 rt) D(t)(1 rt)dt  

    
   

    
                   


1

1 d 1

d

t

( )( t t ) ( )( t t )

2

t

(1 rt
C e 1 e 1 (1 rt)dt

( ) ( )
 

    
   

  
                


1

1 d 1

d

t

( )( t t ) ( )( t t )

2

t

(1 rt)
C e 1 e 1 dt

( ) ( )
 

 

 
 

         

1

1

d

t

( )( t t )

t

r e 1 dt
( )

 

    
                 

1 d( )( t t ) 1
2 1 d2

t(1 rt)
C e 1 t t

( ) ( ) ( )
 

 
      

        
         

1 d( )( t t ) 2
2d d

12

t te 1
r t 1

( ) ( ) 2 ( ) 2 2
 

        
     
               

1 d 1 d( )( t t ) ( )( t t )

d1

2 2 3 3

tt e e

( ) ( ) ( ) ( ) ( )
   (12) 

The shortage cost per cycle due to partial backlogging is given by 

    
1

T

3 3

t

Sc c (1 rt)( I (t))dt  

           


              
1

T

3 1

t

c 1 rt ln 1 T t ln 1 T t dt  

         
   

                            
 
1 1

T T

3 3
1 1

t t

c c
ln 1 T t ln 1 T t dt r t ln 1 T t  
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The opportunity cost per cycle due to lost sales is given by 
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 Therefore the total variable cost per unit time is given by. 

 CVT (t1, t) = {Ordering cost+ inventory holding cost + the deterioration cost + Shortage cost 

+opportunity cost}/ T 
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                                                                                                     (15) 

 In this way we obtain total cost equation of the system in consideration. It is observed that the 

obtained total cost equation is highly non-linear transcendental equation. It can be solved numerically 

with the help of some suitable computational software like MATLAB or MATHEMATICA. After that 

we can obtain optimal values of time and thereafter-total cost of the system under discussion. 
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CONCLUSIONS 

In this paper we have considered an inventory model for the items having stock dependent demand. It 

was very obvious a fact that given some time, every item can create a niche for itself in the customer’s 

mind, hence increasing its demand with the passage of time. Later with the advent of supermarkets, it was 

commonly acknowledged that vast displays of stocks induce the customer into buying more. Also it was 

noted that a decline in the level of displayed stock witnessed a decline in the customer’s demand for that 

item. For a long time, stock dependent demands were not explored, although the dependence of the sale 

of any item on its selling price is not a new concept, but a common sense conclusion. It is a general 

observation that an increase in the selling price of the commodity will deter its customer’s from opting 

that item in future. However, a dip in the selling price, in whatever form it may come, always notices a 

sudden In this paper we have also considered the factor of inflation with constant rate of inflation. This 

paper helps to determine an optimal replenishment policy for non-instantaneous deteriorating items with 

stock dependent demand and partial backlogging. 
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